Southern Africa 2018/19 summer crops

updated March 19, 2019

Highlights:

- The southernmost region of the African continent started the 2018/19 summer cropping season with rains delayed by nearly a month. The long delay in onset resulted in reductions in planted area.
- Limited rainfall following the delayed start, resulted in wilting and below average yield prospects for crops, especially maize in central Southern Africa, where dryness persisted during critical stages of development.
- The main dry pattern observed throughout the season across central and western areas of the region is forecast to persist through the end of March.
- Tropical Cyclone “Idai” rapidly developed throughout the week of March 11th and struck central Mozambique on the evening of the 14th as a high-impact event with high winds and. As of Tuesday March 19th, the cyclone has reportedly caused over 240 fatalities and damage to infrastructure, homes and croplands.

Season Progress to Date:

Southern Africa started the 2018/2019 summer season with nearly a month delayed start to the rains. Limited rains in the east in early January slightly improved conditions. However, this was followed by a continued dry spell from late January through early February across the central parts of the region resulting in reports of widespread wilting and below average yield prospects across the worst affected areas of Angola, Namibia, Botswana, Lesotho, Zimbabwe, southern parts of Zambia and Mozambique, as well as western South

1 South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, Mozambique, Madagascar, Malawi, Zambia, Angola, Congo and the DRC
Africa. In some areas, localized rainfall totals have been thirty percent or more below average. In South Africa, dry conditions over the west during early summer resulted in reduced planted area. However, widespread rain in late January to mid-February and recent rainfall in the first two weeks of March have improved conditions particularly in eastern parts of the main maize-growing areas.

Figure 3. Agro-climatic indicators over maize regions in Free State, South Africa during the current 2019 season. Drier than average conditions early in the season followed by rain events in early January and early to mid-February, which have helped to spur crop development.

The impact of reduced planted area is clearly visible on January/February high resolution satellite imagery (Sentinel 2) for some of the main cereal producing regions in South Africa including Free State and North West. In Figure 4 and 5, red color indicates active vegetation, whereas light green indicates bare soil or sparsely vegetated soil. Crop areas in 2019 show significantly less active vegetation than at the same time in 2018 and it can be assumed that most of the areas in bright green have not been planted in the 2018/2019 season.

Figure 4. Sentinel-2 Imagery (composite 22/01-19/02) showing crop areas in Free State, close to Wesselsbron, in 2019 (left) and in 2018 (right). Source: JRC - ASAP
Forecast and Climate Drivers:

An intense tropical cyclone "Idai" rapidly developed and struck central Mozambique on late Thursday, March 14th as a high-impact event. According to the European Commission, there was loss of lives and significant damage to property over Mozambique and Zimbabwe. As of Tuesday March 19th the cyclone has affected over 15,000 people, caused over 240 fatalities and resulted in significant damage to infrastructure, homes and croplands (EC ECHO, March 19 2019).

Upcoming two week forecasts show above average rainfall continuing in northern Mozambique and potential for above average rainfall in eastern parts of South Africa's main maize growing area.

Based on recent rainfall, next two-week forecasts and longer-term outlooks, the main dry pattern observed throughout the season across the central and western areas of the region is likely to persist.

Figure 5. Sentinel-2 Imagery (composite 22/01-19/02 showing crop areas in North West, close to the border with Free State, in 2019 (left). Source: JRC - ASAP

Figure 6. On the left, an estimate for 2019 rainfall totals (the difference from average) including the rain forecast for March 16th-20th. On the right, the forecast probability of above or below average rainfall for March 26th-April 1st (released March 18th). Source: UCSB Climate Hazards Center CHIRPS data and NOAA/CPC GEFS forecast. For more information about how these sources are combined: Blending CHIRPS Data and GEFS Forecasts for an Enhanced Rainfall Forecast Product, http://blog.chg.ucsb.edu/?p=443.

Potential Outcomes:

Based on recent rainfall, the two-week forecast and longer-term outlooks, the dry pattern present throughout the season across the central and western areas of southern Africa is likely to persist through to the end of March. This marks the end of key crop development stages and without further rainfall received, significant improvement from current conditions is unlikely.

In South Africa, dry conditions over the west during early summer resulted in reduced planted area. Widespread rain in late January to mid-February and recent rainfall in the first two weeks of March have improved previously dry conditions. According to the latest forecasts (February 27) from the [Department of Agriculture, Forestry and Fisheries of the Republic of South Africa](https://www.agric.za.za), the commercial maize output is pegged at 10.5 million tonnes, 19 percent lower than previous season. The planted area of the current season is 2.3 million hectares, around 1 percent lower than the 2,318 million hectares planted last season and below early-seasonal expectations. South Africa accounts for approximately 50 percent of the maize production of the Southern Africa region and it’s the main exporter of the region, to neighbor countries. While production prospects are below the previous year, recent rainfall improvements over previously dry areas is expected to improve final yields. This may in turn support regional food availability.

Despite significant rainfall, from tropical storm “Idai”, it is expected this will not overcome the severe wilting that has already taken place in the south of Zimbabwe over Matabeland and Masvingo due to extreme moisture deficits during the season. However, in the north of Zimbabwe, southern Mozambique where drought damage has been less severe, rainfall may have a more significant positive impact and further monitoring is needed.

The GEOGLAM Crop Monitor team is monitoring the situation. Further information will be provided in the next Crop Monitor for Early Warning and Crop Monitor for AMIS reports, to be released April 4th.
Prepared in Collaboration with:

Prepared by members of the GEOGLAM Community of Practice
Coordinated by the University of Maryland with funding from NASA Harvest
The Crop Monitor is a part of GEOGLAM, a GEO global initiative.

https://cropmonitor.org/

@GEOCropMonitor

Disclaimer: The Crop Monitor special report is produced by GEOGLAM with inputs from the following partners (in alphabetical order): ARC, CHC UCSB, EC JRC, FAO GIEWS, FEWS NET, WFP, and UMD. The findings and conclusions in this joint multiagency report are consensual statements from the GEOGLAM experts, and do not necessarily reflect those of the individual agencies represented by these experts. GEOGLAM accepts no responsibility for any application, use or interpretation of the information contained in this report and disclaims all liability for direct, indirect or consequential damages resulting from the use of this report.